Example 12.2-DA3 Anchored sheet pile wall Verification of strength (limit state GEO)

Design situation

Consider an embedded sheet pile retaining wall which retains $H_{nom}=6m$ of medium dense sand with characteristic weight density $\gamma_{k}=19\frac{kN}{m^{3}}$, angle of shearing resistance $\phi_{k}=36^{\circ}$, and effective cohesion $c^{'}{}_{k}=0$ kPa. The soil's angle of shearing resistance under constant volume conditions is estimated to be $\phi_{cv,k}=32^{\circ}$. Groundwater is located at ground level on both sides of the wall. A variable imposed surcharge of $q_{Qk}=10$ kPa acts at the head of the wall. The wall is supported by a single row of anchors placed at $d_{a}=1m$ below ground level. The wall toe is at a nominal depth $d_{nom}=5.85m$ below

formation level. The unit weight of water is
$$\gamma_{\rm W} = 9.81 \frac{\rm kN}{\rm m}^3$$

Design Approach 3

Geometry

Unplanned 'overdig' $\Delta H = min \left[10\% \left(H_{nom} - d_a \right), 0.5 m \right] = 0.5 \, m$ Unplanned height of excavation $H_d = H_{nom} + \Delta H = 6.5 \, m$ Reduced depth of embedment $d_d = d_{nom} - \Delta H = 5.4 \, m$ Total length of wall $L_d = H_d + d_d = 11.9 \, m$

Actions

Vertical total stresses (excluding surcharge) at...

ground level
$$\sigma_{v,k_1}=0.$$
kPa wall toe (retained side) $\sigma_{v,k_2}=\sigma_{v,k_1}+\gamma_k\times\left(H_d+d_d\right)=225.2$ kPa formation level $\sigma_{v,k_3}=0$ kPa wall toe (restrained side) $\sigma_{v,k_4}=\sigma_{v,k_3}+\gamma_k\times d_d=101.7$ kPa

Difference in hydraulic head $\Delta h = H_d = 6.5 \,\text{m}$

Distance around wall $x = H_d + 2d_d = 17.2 \text{ m}$

Hydraulic head at wall toe
$$h_{toe} = \frac{\Delta h}{V} \times (H_d + d_d) = 4.48 \text{ m}$$

Pore water pressures at... (assuming head falls linearly around wall)

ground level
$$u_{k_1} = 0kPa$$

formation level
$$u_{k_3} = u_{k_1} = 0 \text{ kPa}$$

wall toe (retained side)
$$u_{k_2} = \gamma_w \times (H_d + d_d - h_{toe}) = 72.3 \text{ kPa}$$

wall toe (restraining side)
$$u_{k_4} = u_{k_2} = 72.3 \text{ kPa}$$

Vertical effective stresses (excluding surcharge) at...

ground level
$$\sigma'_{v,k_1} = \sigma_{v,k_1} - u_{k_1} = 0 \text{ kPa}$$

wall toe (retained side)
$$\sigma'_{v,k_2} = \sigma_{v,k_2} - u_{k_2} = 152.9 \, \text{kPa}$$

formation level
$$\sigma'_{v,k_3} = \sigma_{v,k_3} - u_{k_3} = 0 \text{ kPa}$$

wall toe (restraining side)
$$\sigma'_{v,k_{\Delta}}=\sigma_{v,k_{\Delta}}-u_{k_{\Delta}}=29.4\,\text{kPa}$$

Material properties

Partial factors from Set M2: $\gamma_{\odot} = 1.25$ and $\gamma_{c} = 1.25$

Design angle of shearing resistance
$$\varphi_d = \tan^{-1}\!\left(\frac{\tan\!\left(\phi_k\right)}{\gamma_\phi}\right) = 30.2\,^\circ$$

Design effective cohesion
$$c'_d = \frac{c'_k}{\gamma_c} = 0 \text{ kPa}$$

Constant volume angle of shearing resistance (partial factor applied)

$$\phi_{\text{cv,d}} = \tan^{-1} \left(\frac{\tan(\phi_{\text{cv,k}})}{\gamma_{\phi}} \right) = 26.6^{\circ}$$

For soil/steel interface
$$k = \frac{2}{3}$$

Design angle of wall friction $\,\delta_{\mbox{\scriptsize d}}=\,\mbox{\scriptsize k}\times\,\phi_{\mbox{\scriptsize cv.d}}=\,17.7\,\mbox{\scriptsize deg}$

Design friction/shearing ratio
$$\frac{\delta_d}{\phi_d} = 0.59$$

Effects of actions

Partial factors from Set A2: $\gamma_G = 1$ and $\gamma_O = 1.3$

Active earth pressure coefficients $K_{a\gamma} = 0.287$ $K_{aa} = 0.287$ $K_{ac} = 1.226$

Horizontal effective stresses (numbers refer to diagram)

$$\sigma'_{a,d_{1}} = \left[\gamma_{G} \times \left(K_{a\gamma} \sigma'_{v,k_{1}} - K_{ac} c'_{d} \right) + \gamma_{Q} \times K_{a\gamma} q_{Qk} \right] = 3.7 \text{ kPa}$$

$$\sigma'_{a,d_{2}} = \left[\gamma_{G} \times \left(K_{a\gamma} \sigma'_{v,k_{2}} - K_{ac} c'_{d} \right) + \gamma_{Q} \times K_{a\gamma} q_{Qk} \right] = 47.7 \text{ kPa}$$

$$\sigma'_{p,d_{3}} = \left[\gamma_{G} \times \left(K_{p\gamma} \sigma'_{v,k_{3}} + K_{pc} c'_{d} \right) \right] = 0 \text{ kPa}$$

$$\sigma'_{p,d_{4}} = \left[\gamma_{G} \times \left(K_{p\gamma} \sigma'_{v,k_{4}} + K_{pc} c'_{d} \right) \right] = 132.8 \text{ kPa}$$

Water pressures (numbers refer to diagram)

$$\begin{aligned} &\mathbf{u_{a,d}}_{1} = \gamma_{G} \times \mathbf{u_{k_{1}}} = 0 \, \text{kPa} \\ &\mathbf{u_{a,d}}_{2} = \gamma_{G} \times \mathbf{u_{k_{2}}} = 72.3 \, \text{kPa} \\ &\mathbf{u_{p,d}}_{3} = \gamma_{G} \times \mathbf{u_{k_{3}}} = 0 \, \text{kPa} \\ &\mathbf{u_{p,d}}_{4} = \gamma_{G} \times \mathbf{u_{k_{4}}} = 72.3 \, \text{kPa} \\ \end{aligned}$$

Horizontal total stresses (numbers refer to diagram)

$$\sigma_{a,d_1} = \overbrace{\left(\sigma'_{a,d_1} + u_{a,d_1}\right)}^{\bullet} = 3.7 \text{ kPa}$$

$$\sigma_{a,d_2} = \overbrace{\left(\sigma'_{a,d_2} + u_{a,d_2}\right)}^{\bullet} = 120 \text{ kPa}$$

$$\sigma_{p,d_3} = \overbrace{\left(\sigma'_{p,d_3} + u_{p,d_3}\right)}^{\bullet} = 0 \text{ kPa}$$

$$\sigma_{p,d_4} = \overbrace{\left(\sigma'_{p,d_4} + u_{p,d_4}\right)}^{\bullet} = 205.1 \text{ kPa}$$

Horizontal thrust
$$H_{Ed} = \left(\frac{\sigma_{a,d_1} + \sigma_{a,d_2}}{2}\right) \times L_d = 732.9 \frac{kN}{m}$$

Overturning moment about point 'O'

$$M_{\text{Ed}_{1}} = \left(\frac{\sigma_{\text{a},\text{d}_{1}} \times L_{\text{d}}}{2}\right) \times \left(\frac{L_{\text{d}}}{3} - d_{\text{a}}\right) = 65.3 \frac{\text{kNm}}{\text{m}}$$

$$M_{Ed_2} = \left(\frac{\sigma_{a,d_2} \times L_d}{2}\right) \times \left(\frac{2L_d}{3} - d_a\right) = 4904 \frac{\text{kNm}}{\text{m}}$$

$$\text{sum } M_{Ed} = \sum_{i=-1}^{2} M_{Ed_i} = 4969.3 \frac{\text{kNm}}{\text{m}}$$

Resistance

Partial factor from Set R3: $\gamma_{Re} = 1$

Horizontal resistance
$$H_{Rd} = \frac{\left(\frac{\sigma_{p,d_3} + \sigma_{p,d_4}}{2}\right) \times d_d}{\sigma_{Re}} = 548.6 \frac{kN}{m}$$

Restoring moment about point 'O'

$$M_{Rd} = \frac{\left(\frac{\sigma_{p,d_4} d_d}{2}\right) \times \left(\frac{2d_d}{3} + H_d - d_a\right)}{\gamma_{Re}} = 4973.8 \frac{kNm}{m}$$

Verifications

Design values $M_{Ed} = 4969.3 \frac{kNm}{m}$ and $M_{Rd} = 4973.8 \frac{kNm}{m}$

Degree of utilization
$$\Lambda_{GEO,3} = \frac{M_{Ed}}{M_{Rd}} = 100 \%$$

Design is unacceptable if the degree of utilization is > 100%

For horizontal equilibrium, anchor must provide design resistance of

$$F_d = H_{Ed} - H_{Rd} = 184.3 \frac{kN}{m}$$

where
$$H_{Ed} = 732.9 \frac{kN}{m}$$
 and $H_{Rd} = 548.6 \frac{kN}{m}$

The wall cross-section must now be designed to withstand...

Maximum bending moment in wall $M_{d,max} = -502.8 \frac{kNm}{m}$

Maximum shear force in wall $V_{d,max} = -176 \frac{kN}{m}$